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Glucomannan, long recognized as the active ingredient of the traditional Chinese medicinal 
herb Konjac glucomannan, is a naturally occurring polysaccharide existing in certain plant 
species and fungi. Due to its special property to also serve as a dietary supplement, 
glucomannan has been widely applied in clinic to lower body weight and circulation 
cholesterol level and to treat constipation, diabetes, and arterial sclerosis. Besides the 
regulatory role engaged with gastroenterological and metabolic syndrome, recently, its 
therapeutic effect and the underlying mechanisms in treating cancerous diseases have 
been appreciated by mounting researches. The present review aims to emphasize the 
multifaceted aspects of how glucomannan exerts its anti-tumor function.
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INTRODUCTION

Currently, tumors are increasingly becoming a global health issue. According to an epidemiological 
survey, cancer already surpasses cardiovascular and cerebrovascular accidents, and ranks as the top 
life-threatening disease worldwide. A status report on the global burden of cancer using GLOBOCAN 
estimated 18.1 million new cancer cases and 9.6 million cancer deaths in 2018 year alone (Bray et al., 
2018). The overall cancer (containing more than 18 types of cancer) 5-year survival rates in China, 
Japan, and the United States were 36.0%, 57.4%, and 64.0% (Allemani et al., 2018), which suggests a 
significant variation among different countries.

The reasons that make cancer so tough to deal with are complicated. Basically speaking, 
dysfunctional cell cycle regulation with an excessive proliferation capacity and undifferentiated 
immature phenotype are the hallmarks of cancer pathology. Besides, tumor cells show intrinsic 
aberrance of multiple cellular processes. High expression of pro-survival genes like BCL-2 and 
MCL1 render them apoptosis resistant (Sawai et al., 2018), and metabolic pathways are rewired 
to make tumor cells better adapt to the changing environment. Tumor cells are experts in nutrient 
utilization; they adopt distinct metabolic programs, ranging from glycolysis, fatty acid oxidation, 
to amino acid metabolism under various circumstances. Accompanied by the elevated metabolic 
activity required for uncontrolled growth, the production of reactive oxygen species (ROS) is 
substantially increased, which further causes genomic instability and accumulation of genetic 
mutation (Sabharwal and Schumacker, 2014). Interestingly, autophagy seems to play a dual role in 
tumor development. During the early stage, autophagy inhibits tumor formation through alleviating 
cellular stress; however, this mechanism is then hijacked by later-stage tumor cells to facilitate their 
growth under extreme conditions. To make things awkward, tumors could also have active impact 
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on the microenvironment where they live. VEGF-C from tumor 
cells promotes blood and lymphatic vessel neogenesis, which is 
in favor of tumor cells’ development and metastasis (Liu et al., 
2019). Meantime, immune cells are educated into a tolerant or 
anergic state, thus leading to tumor immune evasion.

Researches on cancer treatment are focused on two aspects: 
one is to discover new anti-tumor therapy, while another is to 
establish an efficient drug-delivery system. With the advance of 
medical science, we now possess huge artillery of weapons against 
tumor. Conventional protocols including surgical removal, radio-
therapy, and chemotherapy form the basis of clinical therapies. 
Strikingly, immunological approaches are emerging as a strong 
supplement. The deployment of cell-based CAR-T (Abramson 
et al., 2017) or DC-CIK strategy (Zhang et al., 2018) and usage of 
checkpoint inhibitors (anti-PD-1, anti-CTLA4, etc.) (Wei et al., 
2017) as well as tumor vaccines (Kaiser, 2017) bring about great 
benefits for certain populations of patients. To further improve 
the selectivity, biomarker-discovery-based monoclonal antibody 
development and finely designed nanoparticle carriers are 
applied. Nonetheless, these measures are not enough to win the 
battle against tumors. The side effect, off-target effect, and loss 
of effect are prevalent phenomena among present therapeutic 
protocols. Thus, it is of importance to pursue additional methods 
and bioactive anti-tumor compounds.

Glucomannan is a family of polysaccharide widely existing 
in higher plants and microorganisms. The backbone structure is 
β-(1→4) glycoside bond linked D-mannose and D-glucose in a 
ratio of 1.6:1, while it is only lightly branched through β-(1→6) 
glucosyl moieties (Wu et al., 2011a). The molecular weight ranges 
from 200,000 to 2,000,000 Daltons, which varies with origin, 
method of processing, and storage time. In general, glucomannan 
has favorable characteristics of water solubility and extremely 
low toxicity (Hassan et al., 2014; Luan et al., 2017), which 
make it a fantastic bio-compatible compound. Actually, Konjac 
glucomannan, the well-known member of the glucomannan 
family, was first documented as a traditional Chinese herb about 
2000 years ago (CP C, 2010). Since then, it has been used to treat 
conditions such as asthma, cough, hernia, breast pain, burns, 
and hematological and skin diseases (CP C, 2010). Nowadays, 
it mainly serves either as a dietary supplement aiding in weight 
loss, diabetes, arterial sclerosis, and constipation, or as an 
emulsifier and thickener in food processing (Chen et al., 2017a; 
Wu et al., 2018), which corroborates the old theory of “homology 
of medicine and food.” In fact, many natural polysaccharides that 
show potent anti-tumor activity (Kim et al., 2011; Xiao et al., 
2017; Zhang, 2017; Deng et al., 2018) derive from edible herbs, 
such as Lentinus, Cordyceps, Ganoderma lucidum, and Hericium, 
which themselves are also common cuisine ingredients. Recently, 
glucomannan extracted from Amorphophallus konjac (Chen 
et al., 2017a), Bletilla striata (Zhan et al., 2014), Lentinus edodes 
(Fujii et al., 1978), Aloe vera (Sampedro et al., 2004; Im et  al., 
2005; Liu et al., 2006; Im et al., 2016; Quezada et al., 2017), and 
Candida utilis (Kumano et al., 1985) were demonstrated to have 
similar effect. Moreover, according to the studies reviewed in the 
present research, glucomannan, mainly from these species, not 
only is an anti-cancer drug by itself but also works as a targeted 
carrier that is compatible with various bioactive compounds.

GLUCOMANNAN DIRECTLY INTERFERES 
WITH INTRINSIC TUMOR CELLS 
BIOLOGICAL PROCESSES

Glucomannan Impairs Tumor Cells’ 
Survival and Metastasis
Given that tumor cells are apoptosis resistant, drugs aimed to 
promote apoptosis are widely used in cancer therapy (Hassan 
et al., 2014). Initially, studies unveiled the therapeutic effect of 
extract from A. konjac (AKe) on various cancers, such as colon 
carcinoma (Ansil et al., 2013; Ansil et al., 2014a), gastric cancer 
(Chen et al., 2017a), hepatoma (Ansil et al., 2014b), and breast 
cancer (Wu et al., 2018; Wu et al., 2019). Chen et al. found that 
AKe could inhibit the growth of in vitro cultured gastric cancer 
cell lines SGC-7901 and AGS (Chen et al., 2017a). On the 
molecular level, the expression of inhibitors of apoptosis protein 
(IAP) family member survivin and the pro-survival gene BCL2 
decreased, while the pro-apoptosis protein BAX and caspase-9 
increased (Chen et al., 2017a) (Figure 1). AKe also displayed 
similar therapeutic effect on human liver cancer cell line and the 
human triple-negative breast cancer (TNBC) cells (Ansil et al., 
2014b; Wu et al., 2018). By blocking the transition from G0/G1 
to G2/M phase and decreasing the expression of the proliferative 
marker proliferative cell nuclear antigen (PCNA), AKe promotes 
cell cycle arrest and inhibits cell division (Ansil et al., 2013; 
Chen et al., 2017a) (Figure 1). The elevated activity of tumor cell 
apoptosis is always accompanied by decreased cell proliferation, 
which stems from the shared down-regulated PI3K/AKT 
signaling pathway (Frisch and Screaton, 2001; Guanen et al., 
2018). Since Konjac glucomannan was identified as the major 
bioactive component of the A. konjac (Chen et al., 2017a), not 
surprisingly, Sawai S. and his colleagues found that Konjac-
glucomannan-treated HepG2 hepatic carcinoma cells displayed a 
significant reduction of growth, which resembles the phenotype 
of AKe-treated tumor cells (Sawai et al., 2018).

Indeed, the PI3K/AKT/mTOR pathway is frequently hyper-
activated in tumor cells and also plays an important role in 
cancer metastasis (Guanen et al., 2018). AKe was found to 
inhibit PI3K signaling pathway and thwart MDA-MB231 
breast cancer cell metastasis to lung in a xenograft model (Wu 
et al., 2018). The chemokine receptors and adhesion molecules 
are strongly linked to tumor recurrence and metastasis. AKe 
was reported to significantly increase E-cadherin expression 
and reduce CCR7 and CXCR4 level, which are required for 
tumor migration (Wu et  al., 2018) (Figure 1). Moreover, 
the glucomannan extracted from the C. utilis preferentially 
inhibited the Lewis lung carcinoma (3LL) pulmonary metastases 
in a time-dependent manner, wherein an optimal dosage of 
glucomannan on early stage exhibits the optimal suppressive 
effect (Kumano et al., 1985).

Collectively, these data outline the intrinsic impacts of 
glucomannan on tumor cell apoptosis, proliferation, and 
metastatic activity, which are the essential basis for its anti-
tumor function. To a large extent, such effects are attributed to 
glucomannan-mediated inhibition of the PI3K/AKT signaling 
pathway. As a result, increased ratio of pro-apoptotic to 
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anti-apoptotic gene expression undermines the immortality 
of tumor cells, while the reduced level of CCR7 and CXCR4 
compromises their migratory capability.

Glucomannan Enhances Anti-Oxidative 
Activity and Induces Autophagy in Tumor 
Cells
Another glucomannan-mediated anti-cancer effect could be 
ascribed to its role as an antioxidant inducer (Miadoková et al., 
2006; Ansil et al., 2013; Ansil et al., 2014b; Wu et al., 2014). An earlier 
study confirmed that glucomannan isolated from C. utilis exerts 
anti-mutagenic function in a mouse model of cyclophosphamide-
induced mutagenicity, which may result from the decreased 
ROS level (Chorvatovicova et al., 1999). Miadoková et al. further 
concluded that glucomannan from C. utilis cell wall exerts the 
anti-oxidative activity through iron chelation and scavenging of 
hydroxyl radicals in mouse leukemia cell (Miadoková et al., 2006). 
In line with the above observation, glucomannan or AKe was 
demonstrated to enhance the expression of antioxidant enzymes 
in 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis 
and N-nitrosodiethylamine-induced hepatocellular carcinoma 
in rats (Ansil et al., 2013; Ansil et al., 2014c). Besides, Konjac 
glucomannan was able to ameliorate AOM-induced genotoxicity 
via alleviating the DNA damage process initiated by accumulated 
ROS (Wu et al., 2014) (Figure 1).

Alternatively, in the gastric cancer cell lines SGC-7901 
and AGS, investigators found that AKe treatment markedly 
increased the expression of LC3-II, which is a marker of the 
mature autophagosome and indicates high level of autophagy 

(Chen et al., 2017a). Increased cell autophagy plays a protective 
role in early tumor development, with the possible mechanisms 
of autophagy-related stress elimination and even autophagy-
induced cell death. Nassour et al. found that autophagy is an 
important cellular protective process to induce cell death during 
replicative crisis and impaired autophagy is required for initiation 
of tumorigenesis (Nassour et al., 2019). Though the AKT/mTOR 
pathway may be related to the activation of the autophagic 
process (Chen et al., 2014), there is no definite evidence showing 
the existence of the glucomannan-AKT/mTOR-autophagy axis 
in the tumor cells.

GLUCOMANNAN INDIRECTLY AFFECTS 
TUMOR DEVELOPMENT

Glucomannan Promotes Extrinsic 
Environment Disfavoring Tumorigenesis
Glucomannan displays a beneficial effect for constipation and 
promotes intestinal peristalsis. As a dietary water-absorbing 
fiber, it has also been demonstrated to reduce the production 
of carcinogens from the gut (Mizutani and Mitsuoka, 1982; 
Wu and Chen, 2011b; Wu et al., 2011a; Chong, 2013). Due to 
its hydrolytic ability of turning substances into carcinogens, 
β-glucuronidase is identified as a lysosomal enzyme involved 
in the process of tumor development and metastasis (Klinder 
et al., 2008). Another protein peptide hydrolase, mucinase, is 
able to hydrolyze the mucin layer of the gut lumen and make 
the enterocytes to be in direct contact with colon carcinogens 

FIGURE 1 | Direct effects on tumor cell biological processes. (A) Glucomannan promotes tumor cell apoptosis through the up-regulation of pro-apoptotic proteins 
BAX and Caspase-9 and the down-regulation of anti-apoptotic genes like Survivin and BCL2. (B) Glucomannan inhibits tumor cell proliferation through the blockade 
of G0/G1 to G2/M phase transition and decreases the expression of PCNA. (C) Glucomannan hinders tumor cell metastasis by decreasing CCR7 and CXCR4 
expression and increasing E-cadherin level. (D) Glucomannan promotes autophagy and reduces ROS production in tumor cells, thus leading to the alleviation of 
DNA damage and subsequent mutation events.
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(Miller and Hoskins, 1981). According to Dr. Wu’s research, the 
incorporation of Konjac glucomannan in high-fat fiber-free diet 
in rats decreased the activity of β-glucuronidase and mucinase 
by 71% and 68%, respectively (Wu and Chen, 2011b) (Figure 2).

Studies proved that bile acid is in close relationship with the 
carcinogenesis process (Mizutani and Mitsuoka, 1982). It could 
promote gastrointestinal (GI) inflammation (Jia et al., 2018) and 
change the composition of normal gut microbiota, by means of 
which bile acid becomes a risk factor during tumor formation (Jia 
et al., 2018). Administration of Konjac glucomannan was found to 
increase the fecal output of total bile acids in rats (Ikegami et al., 
1984; Wu and Chen, 2011b). What’s more, Konjac glucomannan 
significantly decreases secondary bile acid level in human subjects 
(Wu et al., 2011a). Therefore, the reduction of bile acids would be 
another functional aspect of glucomannan supplementation.

On the other hand, the probiotics, mainly lactobacilli and 
bifidobacteria, are indicated for their anti-colorectal cancer 
function through binding to the mutagens, inhibiting the activity 
of β-glucuronidase, and reducing the level of carcinogenic 

secondary bile acid (Wu et al., 2011a; Chong, 2013). In various 
studies, glucomannan is shown to enhance the content of 
probiotics and its metabolic products, short-chain fatty acids 
(SCFAs), in feces (Mizutani and Mitsuoka, 1982; Ikegami et al., 
1984; Yeh et al., 2007; Wu and Chen, 2011b; Wu et al., 2011a; 
Chong, 2013; Wu et al., 2014; Quezada et al., 2017). SCFAs promote 
the functionality of normal intestinal epithelium and the gut 
integrity (Chong, 2013); also, they stimulate cell differentiation 
program and induce apoptosis of transformed cells (Kumano 
et al., 1985; Yeh et al., 2007; Chong, 2013). Taken together, these 
results suggest that glucomannan could indirectly promote an 
environment that is unfavorable for cancer development, at least 
in the gastroenterological system (Figure 2).

Glucomannan Serves as a Targeted 
Carrier for Anti-Cancer Drug Delivery
A specific drug delivery system is necessary to enhance the 
efficacy of existing chemotherapeutic drugs and to reduce 

FIGURE 2 | Indirect effects through extrinsic environment. Inhibition of the activity of mucinase and β-glucuronidase is achieved through glucomannan or 
glucomannan-induced colonization of probiotics, which results in reduced carcinogens and increased SCFAs content in the gut lumen. Altogether, the tumor 
development is suppressed.
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their side effect. Glucomannan exhibits very low toxicity, 
modifiability, and the absence of immunogenicity (Zhan et al., 
2014). These outstanding characteristics make it an ideal 
drug carrier.

Amphiphilic aliphatic amines grafted Konjac glucomannan 
micelle (Konjac glucomannan-g-AHs), a modified Konjac 
glucomannan, is added with a pH-sensitive Schiff ’s base. With 
improved stability, solubility, and cytotoxicity, the Konjac-
glucomannan-based micelles are able to protect the curcumin 
from degradation and deliver it into the tumor site through 
endocytosis-mediated transmembrane transport (Luan et  al., 
2017). Furthermore, glucomannan synergizes with other bioactive 
compounds to exert anti-tumor function. Combined with 
teniposide, they display enhanced cytotoxic and cytostatic effect 
on mouse leukemia cells (Miadoková et al., 2006) (Figure 3). In 
addition, the Konjac glucomannan/sodium alginate/graphene 
oxide (Konjac glucomannan/SA/GO) complex could effectively 
control the release of anti-cancer drug 5-FU in a local tumor site, 
thus reducing the systematic side effect (Wang et al., 2014; Yuan 
et al., 2019). Liu et al. designed a novel glucomannan-containing, 
aromatic azo agent bis(methacryloyl-amino)-azobenzene cross-
linked hydrogel, which can release peptide drugs at the colon site 
in a pH-dependent or enzymatic degradation mode (Liu et al., 
2004). Chitosan (CS)-coated microsphere, generated on the basis of 
oxidized Konjac glucomannan, makes another promising intestine-
specific drug delivery approach for the treatment of bowel diseases, 
according to Shi’s study (Shi et al., 2017). In brief, glucomannan 
is compatible with many other bioactive compounds and the 
conjugated macromolecular complexes could be easily taken by 

tumor cells, thus improving the therapeutic efficacy of existing anti-
cancer chemicals.

The Effect of Glucomannan on a Tumor 
Immune Microenvironment
Progression of tumor into malignant stage is closely associated 
with a compromised immune surveillance function, wherein 
tumor-associated macrophages (TAMs) are predominantly 
involved (Zhan et al., 2014). Actually, glucomannan from Porang 
was demonstrated to activate macrophages through Toll-like 
receptor 4 (TLR4), increasing the production of interleukin-6 
(IL-6) and tumor necrosis factor α (TNFα) and promoting its 
phagocytic capability in primary macrophages (Gurusmatika 
et al., 2017) (Figure 3). On the other hand, ubiquitous surface 
expression of glucose and mannose receptors makes TAMs 
possible targets for polysaccharides with anti-tumor activity 
(Chorvatovicova et al., 1999; Dong et al., 2009; Zhan et al., 2014). 
Although no specific study indicates that the glucomannan 
binding to the sugar receptor has direct influence on macrophage, 
studies emphasize the intermediary role of glucomannan as a 
TAM-targeting molecule. Glucomannan isolated from B. striata 
(BSP) shows nucleic acid binding affinity after modification by 
N,N’-carbonyl di-imidazole (CDI)/ethylene diamine (Zhan et al., 
2014). The anti-sense nucleotides such as oligo-deoxynucleotide 
and small interference RNA (siRNA) could be delivered by 
the modified glucomannan via the recognition of macrophage 
surface receptors, which mediates the manipulation of TAM-
related gene expression level (Dong et al., 2009). A study shows 

FIGURE 3 | Indirect effects through tumor immune microenvironment. Glucomannan can serve as a drug carrier of anti-tumor drugs such as 5-FU and teniposide 
towards tumor cells or deliver apoptosis-inducing drug alendronate to TAMs through binding to mannose receptor (MR). Alternatively, glucomannan can directly bind 
to TLR4 receptor expressed by TAMs and leads to the secretion of IL-6, etc. In brief, administration of glucomannan reshapes the tumor immune microenvironment 
by increasing anti-tumor cytokines TNFα and IFN-γ and decreasing tolerance-related cytokines like IL-10.
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that glucomannan helps to selectively deliver alendronate to 
tumor-resident macrophages, thus leading to the apoptosis 
and depletion of TAMs (Zhan et al., 2014) (Figure 3). Also, the 
bisphosphonate glucomannan conjugate, consisting of poly-
ethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), 
and a peptide that can be cleaved by matrix metalloproteases 
(MMPs), could be efficiently released to tumor sites and reduce 
the viability of TAMs.

Moreover, glucomannan was demonstrated to enhance the 
immune function both in vivo and in vitro (Zhan et al., 2014). 
Interleukin-10 (IL-10) is known as an immunosuppressive 
cytokine that is enriched in tumors to counteract the killing 
activity of cytotoxic T lymphocytes (CTLs) (Salazar-Onfray, 
1999). Glucomannan could re-energize the immune system 
to attack the tumor cells by decreasing IL-10 level and 
promoting the production of IFN-γ in tumor sites (Suzuki, 
1983; Zhan et al., 2014). Similarly, the acidolysis-oxidized 
Konjac glucomannan up-regulates the expression of cytokines 
like TNFα, interleukin-1β (IL-1β), and IL-6, which collectively 
bolster the anti-tumor immune response (Vazquez-Velasco et al., 
2015; Chen et al., 2017b) (Figure 3). However, it is important 
to note that glucomannan has also been suggested to possess an 
anti-inflammatory effect (Onishi et al., 2007; Wu et al., 2011a). 
Onishi N et al. indicated that pulverized konjac glucomannan 

suppressed the skin inflammatory immune response in NC/
Nga mice evidenced by decrease of substance P, IL-10, IL-4, 
and TNFα (Onishi et al., 2007). Thus, whether the immune 
regulatory function of glucomannan is bidirectional or the 
immune motivating role is specific in local tumor environment 
remains to be determined by future studies.

DISCUSSION

As a straight-chain polymer with few branches, glucomannan 
was first appreciated for its role in gastroenterological disorders 
and metabolic diseases. Much similar to other polysaccharide 
extracts from traditional Chinese herbs, recently, the potential of 
glucomannan involved in anti-cancer therapy is being revealed. 
Accumulating evidence suggests that glucomannan exhibits 
broad but specific anti-tumor effect, when distinct cancer types 
are concerned (Table 1).

Mechanistically, glucomannan has direct impact on tumor 
cell survival and metastasis by blocking the PI3K/AKT signaling 
pathway (Frisch and Screaton, 2001; Guanen et al., 2018). After 
glucomannan treatment, cells show increased apoptosis along 
with decreased proliferation capacity. Meanwhile, the expression 
of chemokine receptors (CCR7 and CXCR4) is reduced, which 

TABLE 1 | The anti-tumor mechanism of glucomannan in different cancer types.

Source of GM Cancer type Model Mechanism

 
 
 
 
 
 
 
 
 
Amorphophallus 
konjac

Breast cancer (Wu et al., 2018; Wu et al., 
2019)

In vitro MDA-MB-231 Induce cell cycle arrest
MDA-MB-231BO Inhibit migration and invasion

In vivo Mice Regulation of the chromosomal and centrosomal instability
Hepatoma (Ansil et al., 2013; Ansil et al., 
2014c; Ansil et al., 2014b; Sawai et al., 2018)

In vitro PLC/PRF/5 Anti-proliferation
HepG2 Increase apoptosis

In vivo Rat Anti-oxidative stress
Decrease cell viability
Promote the production of propionate

In vitro SGC-7901 Increase apoptosis
Gastric cancer (Chen et al., 2017a) AGS Induce cell cycle arrest

In vivo Human Promote autophagy
Colon carcinoma (Wu and Chen, 2011b; Ansil 
et al., 2013; Ansil et al., 2013; Ansil et al., 
2014a; Wu et al., 2014)

In vitro HCT-15 Induce apoptosis
Anti-proliferation

In vivo Rat Anti-oxidative stress
Reduce β-glucuronidase and mucinase activities
Promote the growth of bifidobacteria and lactobacilli and 
production of SCFAs

Lung cancer In vivo Mice —
Candida utilis Lung cancer (Kumano et al., 1985) In vivo Mice Inhibit migration and invasion

Leukemia (Miadoková et al., 2006) In vitro P388D1 Anti-oxidative stress
Lentinus edodes Ehrlich ascites tumor In vivo Mice Induce expression of interferons

Sarcoma S180-bearing (Fujii et al., 1978)
Bletilla striata Sarcoma S180-bearing (Zhan et al., 2014) In vivo Mice Targeted depletion of TAMs
Aloe vera Colon carcinoma (Im et al., 2016; Quezada 

et al., 2017)
In vitro HT29 Promote the growth of bifidobacteria and lactobacilli and 

production of SCFAs
In vivo Mice Induce cell cycle arrest

Leukemia (Sampedro et al., 2004) In vitro C1498 Anti-proliferation
Ehrlich ascites tumor In vivo Mice Activate macrophages
Sarcoma 180-bearing (Im et al., 2005; 
Liu et al., 2006)

SCFAs, short-chain fatty acids; TAMs, tumor-associated macrophages.
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abrogates the migratory ability of the tumor cells (Wu et al., 
2018). Uncontrolled cellular stress is pivotal in the early stage of 
tumorigenesis. Notably, hyperactive tumor metabolism leads to 
elevated ROS level and subsequent oxidative stress, which would 
cause genotoxicity and accumulation of mutations required 
for tumor development (Wu et al., 2014). Autophagy is a stress 
response characterized by degradation of self-components and 
the formation of autophagosomes. During early-stage tumor 
development, autophagy exerts a tumor-suppressive function 
through the clearance of stress-induced organelle damage. 
Glucomannan displays a protective effect by promoting the 
expression of genes associated with ROS scavenging and 
autophagy induction (Chen et al., 2017a). Though the underlying 
mechanism remains obscure, it is plausible to reason that the 
PI3K/AKT signaling pathway may also be critically involved in 
such stress responses. Studies show that inhibition of the PI3K/
AKT pathway limits the glycolytic process and deprives tumor 
cells of energy supply (Chen et al., 2016; Cretella et al., 2018), 
which could explain the reduction of ROS content (Robey and 
Hay, 2009; Zhao et al., 2017) and the elevation of cell autophagy 
level (Jin and White, 2007; Cheong, 2015; Liu et al., 2017). 
Altogether, glucomannan ameliorates cellular stress and prevents 
the tumorigenesis process.

Other than the direct interference of tumor cell biology, 
glucomannan also functions in an indirect manner. 
Glucomannan administration reduces carcinogen production in 
gut lumen and promotes probiotics and SCFA generation, which 
suppresses GI inflammation-related carcinogenesis (Wu et al., 
2011a). On the other hand, due to its excellent bio-compatibility, 
glucomannan can work as a targeted delivery platform to 
enhance the efficiency of traditional drugs like curcumin (Luan 
et al., 2017), teniposide (Miadoková et al., 2006), and 5-FU 
(Wang et al., 2014). Anergic immune microenvironment is an 
important culprit in the process of tumor growth and evasion; 
thus, current therapies like checkpoint inhibitors are designed 
to motivate and re-energize the attacking ability of effector 
immune cells. Strikingly, glucomannan could alter the cytokine 
profile in the tumor vicinity and thus in support of CTL-
mediated cytotoxic effect. TAMs, tumor resident macrophages 

that contribute to the induction of a tolerant immune milieu, 
express receptors for various polysaccharide molecules. 
Glucomannan could increase macrophage phagocytic activity 
and cytokine secretion, such as TNFα and IL-6, via binding to 
TLR4 (Gurusmatika et al., 2017). It also facilitates the function 
of other compounds like siRNA (Dong et al., 2009) and 
alendronate (Zhan et al., 2014) to induce TAM apoptosis. All in 
all, further studies are needed to understand the details of how 
glucomannan impacts the immune system.

Cancer, the primary killer in modern society, is a complicated 
and systematic disease. The ultimate goal in cancer therapy 
is to completely eradicate tumor cells and reach the criteria of 
clinical cure without disease recurrence. It is a challenging task, 
considering the presence of cancer stem cells, intra-tumoral 
heterogeneity, and the formidable adaptability of tumor cells. 
While in pursuit of such purpose, it is also important to render 
patients live in “harmony” with their tumors, which means to 
maintain the high quality of life amid the effort to stop tumor 
from deterioration. According to a report published in JAMA 
Oncology in 2019, 1/3 of cancer patients would seek for help 
from alternative medicines (Sanford et al., 2019). Nature holds 
the key to cancer management, and ethnopharmacological herbs 
may be one of the answers that nature provides. Therefore, the 
identification, synthesization, and modification of additional 
bioactive anti-tumor compounds like glucomannan from natural 
ethnopharmacological herbs would greatly benefit the process 
of anti-tumor therapy and contribute to the improvement of 
human health.
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